Exponents

Introduction

Whole number exponents stand for repeated multiplication.

For example, 4^3 or "four to the third power," means 4 times *itself* 3 times, or 4 x 4 x 4, or 4 · 4 · 4 The example, 4^3 , equals 64 because $4 \cdot 4 = 16$, which, multiplied by 4 a third time, equals 64.

In the example above, 4 is called the **base**, and 3 is called the **exponent**.

Another example:

 $8^4 = 8 \cdot 8 \cdot 8 \cdot 8$

 $8 \cdot 8 = 64$ $64 \cdot 8 = 512$ $512 \cdot 8 = 4096$ So, $8^4 = 4096$

In general, b^n is b times itself n times.

The term "squared" means raised to the second power. Three squared is 3^2 or $3 \cdot 3$ The term "cubed" means raised to the third power. Four cubed is 4^3 or $4 \cdot 4 \cdot 4$

Special Exponents

Any number to the power of 1 is the number you started with. For example:

 $9^1 = 9$ $4^1 = 4$ $1^1 = 1$ $1000^1 = 1,000$ $b^1 = b$

Any number to the 0 power is 1. For example:

 $9^0 = 1$ $4^0 = 1$ $1^0 = 1$ $1000^0 = 1$ $b^0 = 1$

Multiplying Exponential Expressions

When multiplying exponential expressions with the same base, keep the base the same and add the exponents. For example:

$$4^{3} \cdot 4^{5} = (4 \cdot 4 \cdot 4) \cdot (4 \cdot 4 \cdot 4 \cdot 4) = 4^{8} \qquad 7^{2} \cdot 7^{3} = (7 \cdot 7) \cdot (7 \cdot 7 \cdot 7) = 7^{5} \qquad b^{m} \cdot b^{n} = b^{m+n}$$

Dividing Exponential Expressions

When dividing exponential expressions with the same base, keep the base the same and subtract the exponents. For example:

$$3^{5} \div 3^{2} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3} = 3^{3} \qquad 7^{4} \div 7^{3} = \frac{7 \cdot 7 \cdot 7 \cdot 7}{7 \cdot 7 \cdot 7} = 7^{1} = 7 \qquad \frac{5^{4}}{5^{2}} = \frac{5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5} = 5^{2} \qquad \frac{b^{m}}{b^{n}} = b^{m \cdot n}$$

Negative Exponents

A base with a negative exponent is its reciprocal (fraction turned upside down) with a positive exponent. A negative exponent signals you to turn the expression into a fraction and put the term with the negative exponent on the opposite level of the fraction as a positive exponent.

For example:

$$5^{-2} = \frac{1}{5^{-2}} = \frac{1}{25} \qquad 6^{-3} = \frac{1}{6^{-3}} \qquad \frac{1}{9^{-4}} = 9^4 \qquad b^{-y} = \frac{1}{b^{-y}}$$
$$\frac{1}{3^{-4}} = 3^4 \qquad \frac{1}{5^{-3}} = 5 \stackrel{?}{=} \qquad \frac{3^{-2}}{5^{-4}} = \frac{5^4}{3^2} \qquad \left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 \qquad \frac{1}{b^{-y}} = b^{-y}$$

Exponents Raised to a Power

Exponential expressions can be raised to a power themselves. When raising an exponential expression to a power, keep the base the same and multiply the exponents.

For example:

 $(8^3)^2$ is $8^3 \cdot 8^3$ or $(8 \cdot 8 \cdot 8) \cdot (8 \cdot 8 \cdot 8)$ or 8^6 $(5^2)^5 = 5^{10}$ $(2^4)^9 = 2^{36}$ $(b^m)^n = b^{m \cdot n}$

Exponents and Fractions

When a fraction is raised to a power, raise the numerator and denominator to the exponent.

$$\left(\frac{1}{3}\right)^2 = \frac{1^2}{3^2} = \frac{1}{9} \qquad \qquad \left(\frac{2}{5}\right)^2 = \frac{2^3}{5^3} = \frac{8}{125} \qquad \qquad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

Fractions in Exponents

When an exponent is a fraction, use the denominator of the exponent to tell you what root to take of the base. Then raise that to the power of the numerator.

For example:

$$27\frac{2}{3} = (\sqrt[3]{27})^2 = 3^2 = 9$$

$$36\frac{1}{2} = (\sqrt[2]{36})^1 \text{ (also written } \sqrt{36}) = 6$$

$$25\frac{3}{2} = (\sqrt[2]{25})^3 = 5^3 = 125$$

$$x\frac{a}{b} = (\sqrt[b]{x})^a$$

Try These

4	$\frac{10^7}{10^2}$	$(9^2)^4$	
62	12-2	$\left(\frac{1}{2}\right)^{2}$	
34.37	$\frac{1}{6^{-3}}$	$81\frac{1}{2}$	
9 ⁶ ÷9Ξ	$\left(\frac{3}{5}\right)^{-5}$	$\frac{3}{162}$	