Exponents

Introduction

Whole number exponents stand for repeated multiplication.
For example, 4^{3} or "four to the third power," means 4 times itself 3 times, or $4 \times 4 \times 4$, or $4 \cdot 4 \cdot 4$ The example, 4^{3}, equals 64 because $4 \cdot 4=16$, which, multiplied by 4 a third time, equals 64 .

In the example above, 4 is called the base, and 3 is called the exponent.

Another example:

$8^{4}=8 \cdot 8 \cdot 8 \cdot 8$

$$
\begin{aligned}
& 8 \cdot 8=64 \\
& 64 \cdot 8=512 \\
& 512 \cdot 8=4096 \\
& \text { So, } 8^{4}=4096
\end{aligned}
$$

In general, b^{n} is b times itself n times.
The term "squared" means raised to the second power. Three squared is 3^{2} or $3 \cdot 3$
The term "cubed" means raised to the third power. Four cubed is 4^{3} or $4 \cdot 4 \cdot 4$

Special Exponents

Any number to the power of 1 is the number you started with. For example:

$$
9^{1}=9 \quad 4^{1}=4 \quad 1^{1}=1 \quad 1000^{1}=1,000 \quad b^{1}=b
$$

Any number to the 0 power is 1 . For example:

$$
\begin{array}{lllll}
9^{0}=1 & 4^{0}=1 & 1^{0}=1 & 1000^{0}=1 & b^{0}=1
\end{array}
$$

Multiplying Exponential Expressions

When multiplying exponential expressions with the same base, keep the base the same and add the exponents. For example:

$$
4^{3} \cdot 4^{5}=(4 \cdot 4 \cdot 4) \cdot(4 \cdot 4 \cdot 4 \cdot 4 \cdot 4)=4^{8} \quad 7^{2} \cdot 7^{3}=(7 \cdot 7) \cdot(7 \cdot 7 \cdot 7)=7^{5} \quad b^{m} \cdot b^{n}=b^{m+n}
$$

Dividing Exponential Expressions

When dividing exponential expressions with the same base, keep the base the same and subtract the exponents. For example:

$$
3^{5} \div 3^{2}=\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3}=3^{3} \quad 7^{4} \div 7^{3}=\frac{7 \cdot 7 \cdot 7 \cdot 7}{7 \cdot 7 \cdot 7}=7^{1}=7 \quad \frac{5^{4}}{5^{2}}=\frac{5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5}=5^{2} \quad \frac{b^{m}}{b^{n}}=b^{m-n}
$$

Negative Exponents

A base with a negative exponent is its reciprocal (fraction turned upside down) with a positive exponent. A negative exponent signals you to turn the expression into a fraction and put the term with the negative exponent on the opposite level of the fraction as a positive exponent.
For example:

$$
\begin{array}{llll}
5^{-2}=\frac{1}{5^{2}}=\frac{1}{25} & 6^{-3}=\frac{1}{6^{3}} & 9^{-4}=9^{4} & b^{-y}=\frac{1}{b^{y}} \\
\frac{1}{3^{-4}}=3^{4} & \frac{1}{5^{-3}}=5= & \frac{3^{-2}}{5^{-4}}=\frac{5^{4}}{3^{2}} & \left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2} \\
\frac{1}{b^{-y}}=b^{y}
\end{array}
$$

Exponents Raised to a Power

Exponential expressions can be raised to a power themselves. When raising an exponential expression to a power, keep the base the same and multiply the exponents.
For example:
$\left(8^{3}\right)^{2}$ is $8^{3} \cdot 8^{3}$ or $(8 \cdot 8 \cdot 8) \cdot(8 \cdot 8 \cdot 8)$ or 8^{6}
$\left(5^{2}\right)^{5}=5^{10}$
$\left(2^{4}\right)^{9}=2^{36}$
$\left(\mathrm{b}^{\mathrm{m}}\right)^{\mathrm{n}}=b^{\mathrm{m} \cdot n}$

Exponents and Fractions

When a fraction is raised to a power, raise the numerator and denominator to the exponent.

$$
\left(\frac{1}{3}\right)^{2}=\frac{1^{2}}{3^{2}}=\frac{1}{9} \quad\left(\frac{2}{5}\right)^{\Sigma}=\frac{2^{3}}{5^{3}}=\frac{8}{125} \quad\left(\frac{x}{y}\right)^{r}=\frac{x^{n}}{y^{n}}
$$

Fractions in Exponents

When an exponent is a fraction, use the denominator of the exponent to tell you what root to take of the base. Then raise that to the power of the numerator.

For example:

$$
\begin{array}{ll}
27 \frac{2}{3}=(\sqrt[3]{27})^{2}=3^{2}=9 & 36 \frac{1}{2}=(\sqrt[2]{36})^{1}(\text { also written } \sqrt{36})=6 \\
25 \frac{3}{2}=(\sqrt[2]{25})^{3}=5^{3}=125 & x \frac{a}{b}=(\sqrt[b]{x})^{a}
\end{array}
$$

Try These

4_{-}^{-}		$\frac{10^{7}}{10^{2}}$		$\left(9^{2}\right)^{4}$	
$62 \mathbf{C}$		12^{-2}		$\left(\frac{1}{2}\right)^{z}$	
$3 \mathbf{5} \cdot 3^{7}$		$\frac{1}{6^{-3}}$		$81 \frac{1}{2}$	
$9^{\epsilon} \div 9 \Xi$		$\left(\frac{3}{5}\right)^{-5}$		$16^{\frac{3}{2}}$	

